UNISONIC TECHNOLOGIES CO., LTD # 3544 # LINEAR INTEGRATED CIRCUIT # HEADPHONE AMPLIFIER FOR CD-ROMS ## ■ DESCRIPTION As a dual headphone amplifier the UTC **3544** is digital-source. The UTC **3544** has a steady gain of 6dB and so it is unnecessary for external gain setting. The UTC **3544** has internal mute function so that it is greatly simplified for prevention of the popping sound when power is turned on and off. To prevent damage from short circuits the UTC **3544** is equipped with thermal shutdown circuit. #### ■ FEATURES - * Internal mute function to prevent popping sounds when the power is turned on and off. - * Built-in thermal shutdown circuit (150°C) to prevent damage to the IC if a short circuit occurs. ## ORDERING INFORMATION | Ordering | g Number | Daakaga | Packing | | |-------------|--------------|---------|-----------|--| | Lead Free | Halogen Free | Package | | | | 3544L-D08-T | 3544G-D08-T | DIP-8 | Tube | | | 3544L-S08-R | 3544G-S08-R | SOP-8 | Tape Reel | | www.unisonic.com.tw 1 of 9 # ■ PIN DESCRIPTIONS | PIN NO. | PIN NAME | I/O | PIN VOLTAGE | INTERNAL EQUIVALENT CIRCUIT | FUNCTION | |---------|-----------------|-----|---------------------------------------|-----------------------------|---| | 7 | OUT1
OUT2 | 0 | 2.1V
2.1V
(V _{CC} =5V) | 7 \$10k | Output pin | | 2 | MUTE | I | 0.1V
(When open) | 2
190k | Mute control pin
(set to low for
prevention of
popping noise
when power is
turned on and off).
Operating: High
Muting: Low(open) | | 3 5 | IN1
IN2 | I | 2.1V
2.1V
(V _{CC} =5V) | 3
5
180k
BIAS | Input pin | | 6 | BIAS | I/O | 2.1V
(V _{CC} =5V) | 60k
BIAS | Bias pin (the external 47µF capacitor also serves as the anti-pop time constant, therefore make the proper considerations be changing it). | | 4 | GND | I | | | | | 8 | V _{CC} | I | | | | # ■ BLOCK DIAGRAM # ■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C) | PARAMETER | SYMBOL | RATINGS | UNIT | |-----------------------|------------------|------------|-------| | Applied Voltage | V_{MAX} | 7.0 | V | | Power Dissipation | В | 450 | mW | | Derate above 25°C | P_{D} | 4.5 | mW/°C | | Operating Temperature | T _{OPR} | -25 ~ +75 | °C | | Storage Temperature | T_{STG} | -55 ~ +125 | °C | Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. # ■ RECOMMENDED OPERATING CONDITIONS (Ta=25°C) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | |----------------------|-----------------|-----|-----|-----|------| | Power Supply Voltage | V _{CC} | 2.8 | | 6.5 | V | ## ■ ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{CC}=5.0V, R_L=32Ω, V_{IN}= -6dBV, f=1kHz) | PARAMETER | SYMBOL | SYMBOL CONDITIONS | | TYP | MAX | UNIT | |--|-------------------------|--|------|------|-----|------| | Mute Pin Control Voltage | V_{TM} | | 0.3 | 0.7 | 1.6 | V | | Quiescent Current | ΙQ | V _{IN} =0Vrms | 4 | 7 | 10 | mA | | Voltage Gain | Gv | | 4 | 6 | 8 | dB | | Voltage Gain Difference Between Channels | $\triangle Gv_{(DIFF)}$ | | -0.5 | 0 | 0.5 | dB | | Total Harmonic Distortion | THD | BW=20~20kHz | | 0.02 | 0.1 | % | | Rated Output 1 | Po1 | R _L =32Ω,THD<0.1% | 25 | 31 | | mW | | Rated Output 2 | Po2 | R _L =16Ω,THD<0.1% | 50 | 62 | | mW | | Output Noise Voltage | eN | BW=20~20kHz,Rg=0Ω | | -93 | -85 | dBV | | Channel Separation | CS | Rg=0Ω | 82 | 90 | | dB | | Mute Attenuation | ATT | Rg=0Ω | 70 | 80 | | dB | | Ripple Rejection | RR | f _{RR} =100Hz, V _{RR} = -20dBV | 50 | 57 | | dB | ## ■ MEASUREMENT CIRCUIT # ■ MEASUREMENT CONDITIONS | SIGNAL | | | SW T | ABLE | | | MONITOR | CONDITIONS | |-----------------|-----|-----|------|------|------|------|-------------|--| | SIGNAL | SW1 | SW3 | SW5 | SW7 | SW8A | SW8B | WONTOR | CONDITIONS | | I_{Q} | 1 | 1 | 1 | 1 | 2 | OFF | I_Q | | | V_{TM} | | | | | | | | | | G_VC | 1 | 2 | 2 | 1 | 2 | ON | V1AC,V2AC | f=1kHz,V _{IN} 1/2=-6dBV, | | | | | | | | | , | V _{TM} =1.6V | | ∴Gvc | | | | | | | | GVC1 – GVC2 | | THD | 1 | 2 | 2 | 1 | 2 | ON | V1AC,V2AC | $fin=1kHz, V_{IN}1/2=-6dBV,$ | | טחו | ı | | | | | ON | V IAC, VZAC | V _{TM} =1.6V | | De4 | 1 | _ | _ | _ | 2 | ON | | $fin=1kHz, V_{IN}1/2=-6dBV,$ | | Po1 | I | 2 | 2 | 1 | | ON | V1AC,V2AC | V _{TM} =1.6V | | D-0 | 0 | | 0 | | 0 | ON | | $fin=1kHz, V_{IN}1/2=-6dBV,$ | | Po2 | 2 | 2 | 2 | 2 | 2 | | V1AC,V2AC | V _{TM} =1.6V | | V _{NO} | 1 | 1 | 1 | 1 | 2 | ON | V1AC,V2AC | | | | | | | | | | | fin=1kHz,V _{IN} 2= -6dBV, | | 00 | 1 | 1 | 2 | 1 | 2 | ON | V1AC,V2AC | V _{TM} =1.6V | | CS | 1 | 2 | 1 | 1 | 2 | ON | V1AC,V2AC | fin=1kHz,V _{IN} 1= -6dBV, | | | | | | | | | | V _{TM} =1.6V | | ^ TT | 4 | | 0 | | | ON | \/4A@\/@&@ | fin=1kHz,V _{IN} 1/2= -6dBV, | | ATT | 1 | 2 | 2 | 1 | 2 | ON | V1AC,V2AC | V _{TM} =0.3VB | | RR | 1 | 1 | 1 | 1 | 1 | ON | V1AC,V2AC | V _{RR} = -20dBV, f _{RR} =100Hz | ## ■ CIRCUIT OPERATION ## Rising edge timing - A: MUTE period(use with MUTE=Low to prevent the popping noise when the power is turned on and off). - B: MUTE release time(used to prevent the popping noise at the release of MUTE with the external C 2 and R2 and therefore possesses a time constant, so be careful of the timing). - $\hbox{C: MUTE start time} (\hbox{also possesses a time } \ \hbox{constant like the MUTE release time}\,).$ ## APPLICATION EXAMPLE ## ■ EXPLANATION OF EXTERNAL COMPONENTS ## (1)Input coupling capacitor (C3 and C5) First determined by the low-band cut-off frequency. Because the input impedance is $180k\Omega$ for this IC, it can be determined by this formula $$C3(C5)=1/(2\pi \times 180 k\Omega \times f)$$ But make sure taking the fluctuations, ambient temperature, etc into consideration. A multi-layered ceramic capacitor is recommended. #### (2)BIAS capacitor(C6) $47\mu\text{F}$ when Vcc=5V, and $33\mu\text{F}$ when Vcc=3V. Before changing these values take the sufficient considerations. It is because the electrical characteristics will be adversely affected and popping noise may occur if the capacitance is lowered too much. # (3)MUTE pin for anti-pop measures (R2 and C2) An impedance of $190k\Omega$ must be possessed with respect to GND, so the MUTE mode may become unable to be released if R2 is increased too much. ## (4)Output coupling capacitor(C1 and C7) Also determined by the low-band cutoff frequency. Like the output load resistance value R_L (a resistor Rx will be inserted ,assuming that for output protection or current limiting), it can be calculated by this formula $$C1(C7)=1/(2\pi\times(R_L+Rx)\times f)$$ ## (5)Input gain adjustment resistor(R3 and R4) External resistors R3 and R4 can perform input gain adjustment .The desired gain can be calculated by this formula $Gv=6+20log(90k\Omega/(90k\Omega+R3))[dB]$ ## ■ TYPICAL CHARACTERISTICS # ■ TYPICAL CHARACTERISTICS(Cont.) UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.